ActinFilamentPlane.py
#Code template to create invidual market sets and label them by color

lattice_spacing = 200	# Distance between parallel actin filaments, Angstroms.
actin_length = 5000		# Actin length in Angstroms.

from math import sqrt
plane_spacing = sqrt(3)/2 * lattice_spacing

radius = 30		# Radius of cylinder depicting actin filament, Angstroms.

Colors
color1 = (1,1,.5,1)	# Light yellow. (red, green, blue, opacity) 0-1 scale
color2 = (.5,.5,1,1)	# Light blue.
color3 = (1,0,0,1)	#Red
color4 = (0,1,0,1)	#Green
color5 = (1,0,1,1)	#Purple
color6 = (1,1,0,1)	
color7 = (0.5,0.5,0.5,1)	

from VolumePath import Marker_Set, Marker, Link #this is to import the module for Chimera
mset = Marker_Set('ActinFilamentPlane') #defining the name of the marker set

Marker(marker_set_name, id_number, (y_coordinate, x_coorinate, Z_coordinate), color, radius)

nx = 40 #number of actin filaments along x axis

This is first segment in YELLOW. This is the origin.
id = 0
for i in range(nx):
	m1_0 = Marker(mset, id, (i*lattice_spacing,0,0), color2, radius)
	m2_0 = Marker(mset, id, (i*lattice_spacing,actin_length,0), color2, radius)
	Link(m1_0, m2_0, color1, radius) #link the first segment
	id += 1

ActinFilamentCube20x20.py
#Code template to create invidual market sets and label them by color

lattice_spacing = 100	# Distance between parallel actin filaments, Angstroms.
actin_length = 10000		# Actin length in Angstroms.

from math import sqrt
plane_spacing = sqrt(3)/2 * lattice_spacing

radius = 30		# Radius of cylinder depicting actin filament, Angstroms.

Colors
color1 = (1,1,.5,1)	# Light yellow. (red, green, blue, opacity) 0-1 scale
color2 = (.5,.5,1,1)	# Light blue.
color3 = (1,0,0,1)	#Red
color4 = (0,1,0,1)	#Green
color5 = (1,0,1,1)	#Purple
color6 = (1,1,0,1)	
color7 = (0.5,0.5,0.5,1)	

from VolumePath import Marker_Set, Marker, Link #this is to import the module for Chimera
mset = Marker_Set('ActinFilamentPlane') #defining the name of the marker set

Marker(marker_set_name, id_number, (y_coordinate, x_coorinate, Z_coordinate), color, radius)

nx = 20 #number of actin filaments along x axis

This is first segment in YELLOW. This is the origin.
id = 0
for i in range(nx):
	for j in range(nx):
		m1_0 = Marker(mset, id, (i*lattice_spacing,0,j * plane_spacing), color2, radius)
		m2_0 = Marker(mset, id, (i*lattice_spacing,actin_length,j * plane_spacing), color2, radius)
		Link(m1_0, m2_0, color1, radius) #link the first segment
		id += 1

FixingMarkerID.py
Renumber markers giving them unique ids.
This is to fix a messed up marker set where all ids were the same.
from VolumePath import marker_sets, Link
for mset in marker_sets():
 markers = mset.markers()
 mmap = {}
 for m in markers:
 mmap[m.atom] = mset.place_marker(m.xyz(), m.rgba(), m.radius())
 links = mset.links()
 for l in links:
 a1, a2 = l.bond.atoms
 Link(mmap[a1], mmap[a2], l.rgba(), l.radius())
 for m in markers:
 m.delete()

DivideLinks.py
Insert N markers at each selected link. Example Chimera command
#
runscript dividelinks.py 4
#
from VolumePath import markerset

def divide_links(links, n):
 for link in links:
 m1, m2 = link.marker1, link.marker2
 mprev = m1
 mset = m1.marker_set
 for i in range(n):
 f = float(i+1) / (n+1)
 xyz = tuple((1-f)*x1+f*x2 for x1, x2 in zip(m1.xyz(), m2.xyz()))
 m = mset.place_marker(xyz, link.rgba(), m1.radius())
 markerset.Link(mprev, m, link.rgba(), link.radius())
 mprev = m
 markerset.Link(mprev, m2, link.rgba(), link.radius())
 link.delete()

n = int(arguments[0])
links = markerset.selected_links()
divide_links(links, n)

RemoveCross.py
When one selected pseudobond crosses another in the current camera view
remove the longer one.

Keep every pseudobond that is not crossed by a shorter one
as viewed along z axis.
def crossing_pbonds(pbonds):
 spbonds = list(pbonds)
 spbonds.sort(key = lambda b: b.length())
 pb_cross = []
 segments = []	# Segments not crossed by shorter one.
 for pb in spbonds:
 a1,a2 = pb.atoms
 xy1 = a1.xformCoord().data()[:2]
 xy2 = a2.xformCoord().data()[:2]
 segment = (xy1,xy2)
 if any_cross(segment, segments):
 pb_cross.append(pb)
 else:
 segments.append(segment)
 return pb_cross

def any_cross(segment, segments):
 for seg2 in segments:
 if crossing(seg2, segment):
 return True
 return False

def crossing(segment1, segment2):
 (p1,p2),(p3,p4) = segment1,segment2
 if p1 == p3 or p1 == p4 or p2 == p3 or p2 == p4:
 return False # Endpoints match, no crossing
 return opposite_sides(p1, p2, segment2) and opposite_sides(p3, p4, segment1)

Are two points on opposite sides of a line.
def opposite_sides(p1, p2, segment):
 x1,y1 = p1
 x2,y2 = p2
 (x3,y3),(x4,y4) = segment
 dx,dy = (x4-x3, y4-y3)
 nx,ny = (-dy,dx) # Normal vector to segment
 side1 = nx*(x1-x3) + ny*(y1-y3)
 side2 = nx*(x2-x3) + ny*(y2-y3)
 return (side1 < 0 and side2 > 0) or (side1 > 0 and side2 < 0)

Use currently selected pseudobonds
from chimera import selection
pbonds = selection.currentPseudobonds()

Delete longer crossing pseudobonds
cpbonds = crossing_pbonds(pbonds)
for pb in cpbonds:
 pb.pseudoBondGroup.deletePseudoBond(pb)

print ('%d of %d pseudobonds deleted' % (len(cpbonds), len(pbonds)))

pblengths.py
Print lengths of currently selected pseudobonds
from chimera import selection
pbonds = selection.currentPseudobonds()

for pb in pbonds:
 a1, a2 = pb.atoms
 print ('%15s %15s %8.4g' % (a1.oslIdent(), a2.oslIdent(), pb.length()))

All Scripts that are listed in this documents has been written and provided by Tom Goddard of UCSF Chimera development team, the UCSF Resource for Biocomputing, Visualization, and Informatics (RBVI).
